JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Human rhinoviruses inhibit the accessory function of dendritic cells by inducing sialoadhesin and B7-H1 expression.

Dendritic cells (DC) are professional APCs with an unmatched ability to interact with and activate T cells. There is accumulating evidence that DC not only efficiently stimulate T cell activation but also regulate T cell responses. However, little is known about cell surface structures on DC involved in the regulation of T cell responses. We demonstrate that human rhinoviruses (HRV) can efficiently inhibit the accessory function of DC through induction of inhibitory cell surface receptors. We observed that treatment of DC with HRV14 (R-DC), a member of the major group HRV family, diminished their T cell stimulatory capacity and induced a promiscuous and deep anergic state in cocultured T cells despite high levels of MHC molecules as well as costimulatory molecules, e.g., B7-1 (CD80) and B7-2 (CD86), and independent of inhibitory soluble factors such as IL-10. In contrast, expression of inhibitory B7-H1 molecules was up-regulated and R-DC de novo expressed sialoadhesin (Sn). Most importantly, blocking of B7-H1 and Sn on R-DC with specific mAbs against both receptors reverted the inhibitory phenotype. Thus, inhibitory signals delivered from R-DC to T cells via B7-H1 and Sn were critical for the induction of anergy. These observations suggest that an altered accessory molecule repertoire on DC upon interaction with HRV down-modulates adaptive immune responses during the viral infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app