JOURNAL ARTICLE

Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds

George Chen, Carolynn Patten, Dhara H Kothari, Felix E Zajac
Gait & Posture 2005, 22 (1): 51-6
15996592
Treadmill walking was used to assess the consistent gait differences between six individuals with post-stroke hemiparesis and six non-disabled, healthy controls at matched speeds. The hemiparetic subjects walked on the treadmill at their comfortable speeds, while each control walked at the same speed as the hemiparetic subject with whom he or she was matched. Kinematic and insole pressure data were collected from multiple, steady-state gait cycles. A large set of gait differences found between hemiparetic and non-disabled subjects was consistent with impaired swing initiation in the paretic limb (i.e., inadequate propulsion of the leg during pre-swing, increased percentage swing time, and reduced knee flexion at toe-off and mid-swing in the paretic limb) and related compensatory strategies (i.e., pelvic hiking and swing-phase propulsion and circumduction of the paretic limb). Exaggerated positive work associated with raising the trunk during pre-swing and swing of the paretic limb, consistent with pelvic hiking, contributed to increased mechanical energetic cost during walking. A second set of gait differences found was consistent with impaired single limb support on the paretic limb (i.e., shortened support time on the paretic limb) and related compensatory strategies (i.e., exaggerated propulsion of the non-paretic limb during pre-swing to shorten its swing time). Other significant gait differences included asymmetry in step length and increased step width. We conclude that consistent gait differences exist between hemiparetic and non-disabled subjects walking at matched speeds. The differences provide insights, concerning hemiparetic impairment and related compensatory strategies, that are in addition to the observation of slow walking speed.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15996592
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"