COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy: in vitro and in vivo.

Passive targeting by sterically stabilized liposomes (SSL), once combined with efficient intracellular delivery, may be a very useful strategy to improve the antitumor efficacy for the anticancer agents. The arginine-glycine-aspartic acid tripeptide (RGD) is known to serve as a recognition motif for several different integrins located on cell surface. In this study, the RGD tripeptide was coupled to the distal end of the poly (ethylene glycol)-coated liposomes (RGD-SSL) aimed to achieve increased tumor accumulation and enhanced intracellular uptake. DOX-loaded RGD-SSL (RGD-SSL-DOX), DOX-loaded SSL (SSL-DOX), and free DOX were compared with respect to their in vitro uptake and cytotoxicity and their in vivo biodistribution and therapeutic efficacy in tumor-bearing mice. Flow cytometry and confocal microscopy studies revealed that RGD-SSL could facilitate the DOX uptake into melanoma cells by integrin-mediated endocytosis. RGD-SSL-DOX displayed higher cytotoxicity on melanoma cells than SSL-DOX. While RGD-SSL-DOX demonstrated prolonged circulation time and increased tumor accumulation as SSL-DOX did, it showed remarkably higher splenic uptake than SSL-DOX. Mice receiving RGD-SSL-DOX (5 mg DOX/kg) showed effective retardation in tumor growth compared with those receiving same dose of SSL-DOX, free DOX solution, or saline. These results suggest that RGD-modified SSL may be a feasible intracellular targeting carrier for efficient delivery of chemotherapeutic agents into tumor cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app