JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

TRAIL-induced apoptosis in human vascular endothelium is regulated by phosphatidylinositol 3-kinase/Akt through the short form of cellular FLIP and Bcl-2.

BACKGROUND: Apoptosis of vascular endothelial cells plays a central role in angiogenesis and atherosclerosis. This study investigates the molecular mechanisms of endothelial apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) following inhibition of phosphatidylinositol 3-kinase (PI3K). It examines downstream regulation and activation of the extrinsic and intrinsic pathways.

METHODS AND RESULTS: By flow cytometry, TRAIL receptors 2 and 3 were present to a greater extent than receptors 1 and 4. TRAIL reduced cell numbers in combination with the PI3K inhibitor LY 294002. TRAIL (100 ng/ml) with LY 294002 (20 micromol/l) activated the extrinsic pathway, causing progressive cleavage of caspase-8 and caspase-3. Activation of the intrinsic pathway proceeded by release of mitochondrial factors Smac/DIABLO and cytochrome c, and caspase-9 cleavage. LY 294002 reduced phosphorylated Akt (p-Akt), with early loss of the short form of cellular FLIP (c-FLIP(S)) and concurrent reduction of Bcl-2. Treatment with small interfering RNA against PI3K also reduced c-FLIP(S) and Bcl-2, and cotreatment with TRAIL triggered caspase-3 cleavage.

CONCLUSIONS: This study details the molecular regulation of TRAIL-induced apoptosis in vascular endothelium. Inhibition of PI3K reduces p-Akt, with concurrent reductions in c-FLIP(S) and Bcl-2, and so renders endothelium sensitive to TRAIL-induced apoptosis through the extrinsic and intrinsic pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app