JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Quantitation of hemodynamic function during developmental vascular regression in the mouse eye.

PURPOSE: Ultrasound biomicroscopy (UBM) utilizes frequencies higher than conventional diagnostic ultrasound and can noninvasively provide anatomic and functional information about mouse ocular structures in vivo at high resolution. Vascular development can also be assessed with high-frequency Doppler imaging, which permits detection and characterization of ocular blood flow not detectable at lower, conventional Doppler frequencies.

METHODS: The eyes of CD-1 mice were examined daily from the day of birth to postnatal day (P)16. Hyaloid vascular system anatomy was imaged with UBM and microcomputed tomography (microCT). Blood flow velocity was also measured with Doppler UBM imaging in the hyaloid artery, vasa hyaloidea propria, tunica vasculosa lentis, and retina.

RESULTS: In the mouse, the hyaloid vasculature degenerated from a well-defined structure at birth by progressive loss of branches. Hyaloid regression coincided with a progressive decrease in blood velocity detected in the hyaloid vascular structures, which is thought to be one of the major triggering factors of the regression in these vessels. At P13, no further blood flow was detected in the CD-1 mouse hyaloid vasculature. An inverse relationship was also shown between peak blood velocity in the lens and retina.

CONCLUSIONS: UBM imaging provides a valuable means of rapidly and noninvasively characterizing ocular development in vivo. MicroCT scans have also provided intralumenal images of hyaloid vascular structure. This is the first study of vascular structure and function during the dynamic process of hyaloid vascular regression during mouse neonatal eye development and the first three-dimensional images of the complex hyaloid vascular structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app