Cooperation of H2O2-mediated ERK activation with Smad pathway in TGF-beta1 induction of p21WAF1/Cip1

Yong Kee Kim, Gyu-Un Bae, Jae Ku Kang, Jong Woo Park, Eun Kyung Lee, Hoi Young Lee, Wahn Soo Choi, Hyang Woo Lee, Jeung-Whan Han
Cellular Signalling 2006, 18 (2): 236-43
Although it has been demonstrated that p21WAF1/Cip1 could be induced by transforming growth factor-beta1 (TGF-beta1) in a Smad-dependent manner, the cross-talk of Smad signaling pathway with other signaling pathways still remains poorly understood. In this study, we investigated a possible role of hydrogen peroxide (H2O2)-ERK pathway in TGF-beta1 induction of p21WAF1/Cip1 in human keratinocytes HaCaT cells. Using pharmacological inhibitors specific for MAP kinase family members, we found that ERK, but not JNK or p38, is required for TGF-beta1 induction of p21WAF1/Cip1. ERK activation by TGF-beta1 was significantly attenuated by treatment with N-acetyl-l-cysteine or catalase, indicating that reactive oxygen species (ROS) generated by TGF-beta1, mainly H2O2, stimulates ERK signaling pathway to induce the p21WAF1/Cip1 expression. In support of this, TGF-beta1 stimulation caused an increase in intracellular ROS level, which was completely abolished by pretreatment with catalase. ERK activation does not appear to be associated with nuclear translocation of Smad-3, because ERK inhibition did not affect nuclear translocation of Smads by TGF-beta1, and H2O2 treatment alone did not cause nuclear translocation of Smad-3. On the other hand, ERK inhibition ablated the phosphorylation of Sp1 by TGF-beta1, which was accompanied with the disruption of interaction between Smad-3 and Sp1 as well as of the recruitment of Sp1 to the p21WAF1/Cip1 promoter induced by TGF-beta1, indicating that ERK signaling pathway might be necessary for their interaction. Taken together, these results suggest that activation of H2O2-mediated ERK signaling pathway is required for p21WAF1/Cip1 expression by TGF-beta1 and led us to propose a cooperative model whereby TGF-beta1-induced receptor activation stimulates not only a Smad pathway but also a parallel H2O2-mediated ERK pathway that acts as a key determinant for association between Smads and Sp1 transcription factor.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"