Controlled Clinical Trial
Journal Article
Add like
Add dislike
Add to saved papers

Relationship between oxygen uptake kinetics and performance in repeated running sprints.

The purpose of this study was to test the hypothesis that subjects having a shorter time constant for the fast component of VO2 kinetics in a transition from rest to constant exercise would maintain their speed for a longer time during repeated sprint exercise (RSE). Eleven male soccer players completed a graded test, two constant exercises at 60% maximal aerobic speed and RSE, consisting of fifteen 40-m sprints alternated with 25 s of active recovery. All the tests were performed on the field (200 m indoor track). The parameters of the VO2 kinetics (time delay, time constant, and amplitude of the primary phase) during the two constant exercises were modeled. All subjects elicited VO2 during the RSE. A significant correlation was found between VO2 and the relative decrease in speed during the 15 sprints (r=0.71; p < 0.05), but not between VO2 and the cumulated time for the 15 sprints (r=0.48; p > 0.05). There were significant correlations between the time constant of the primary phase and the relative decrease in speed during the 15 sprints (r=0.80; p < 0.01) and the cumulated time for the 15 sprints (r=0.80; p < 0.01). These results suggest that individuals with faster VO2 kinetics during constant load exercise might also have a faster adjustment of VO2 during RSE leading to a shorter cumulated time and a lower relative decrease in speed during the 15 sprints.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app