Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fatigue and recovery of power and isometric torque following isotonic knee extensions.

The purpose of this study was to assess fatigue and recovery of isotonic power and isometric contractile properties after a series of maximal isotonic contractions. Using a Biodex dynamometer, 13 men [26 yr (SD 3)] performed isotonic [50% of isometric maximal voluntary contraction (MVC) every 1.2 s through 75 degrees range of motion] single-limb knee extensions at the fastest velocity they could achieve until velocity was reduced by 35%. Time to task failure was 38 s, and, compared with baseline, power declined by approximately 42% [741.0 (SD 106.0) vs. 426.5 W (SD 60.3) at task failure], and MVC declined by approximately 26% [267.3 (SD 42.5) vs. 198.4 N.m (SD 45.7) at task failure]. Power recovered by 5 min, whereas MVC did not recover, and at 10 min was only approximately 85% of baseline. Isometric MVC motor unit activation was approximately 95% at rest and was unchanged at task failure (approximately 96%), but a small amount of failure was apparent between 1.5 and 10 min of recovery (approximately 87 to approximately 91%). Half relaxation time measured from a 50-Hz isometric tetanus was significantly prolonged by approximately 33% immediately after task failure but recovered by 1.5 min. A decline in the 10- to 50-Hz ratio of the evoked isometric contractions was observed at 5 and 10 min of recovery, which suggests excitation-contraction coupling impairment. Changes in velocity and half relaxation time during the protocol were strongly and negatively correlated (r = -0.85). Thus mainly peripheral mechanisms were implicated in the substantial depression but relatively fast recovery of isotonic power. Furthermore, isometric muscle contractile properties were related to some, but not all, changes in isotonic function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app