JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
RETRACTED PUBLICATION
Add like
Add dislike
Add to saved papers

Caveolin-1 is essential for activation of Rac1 and NAD(P)H oxidase after angiotensin II type 1 receptor stimulation in vascular smooth muscle cells: role in redox signaling and vascular hypertrophy.

OBJECTIVE: Angiotensin II (Ang II) is a potent mediator of vascular hypertrophy in vascular smooth muscle cells (VSMCs). These effects are mediated through the Ang II type 1 receptor (AT1R) and require its trafficking through caveolin-1 (Cav1)-enriched lipid rafts and reactive oxygen species (ROS) derived from Rac1-dependent NAD(P)H oxidase. The specific role(s) of Cav1 in AT1R signaling is incompletely understood.

METHODS AND RESULTS: Knockdown of Cav1 protein by small interfering RNA (siRNA) inhibits Ang II-stimulated Rac1 activation and membrane translocation, H2O2 production, ROS-dependent epidermal growth factor receptor (EGF-R) transactivation, and subsequent phosphorylation of Akt without affecting ROS-independent extracellular signal-regulated kinase 1/2 phosphorylation. Ang II stimulates tyrosine phosphorylation of Sos-1, a Rac-guanine nucleotide exchange factor, which is inhibited by Cav1 siRNA, demonstrating involvement of Cav1 in Rac1 activation. Detergent-free fractionation showed that EGF-Rs are found basally in Cav1-enriched lipid raft membranes and associate with Cav1. Ang II stimulates AT1R movement into these microdomains contemporaneously with the egress of EGF-R. Both aspects of this bidirectional receptor trafficking are inhibited by Cav1 siRNA. Moreover, Cav1 siRNA inhibits Ang II-induced vascular hypertrophy.

CONCLUSIONS: Cav1 plays an essential role in AT1R targeting into Cav1-enriched lipid rafts and Rac1 activation, which are required for proper organization of ROS-dependent Ang II signaling linked to VSMC hypertrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app