English Abstract
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

[Induced activity of nitrate reductase by nitrate and cloning of nitrate reductase gene].

Excessive nitrate accumulated in plants affects vegetable quality severely and excessive nitrate ingestion would do harm to human health. Assimilatory NADH: nitrate reductase (NR, EC 1.6.6.1), a complex Mo-pterin-, cytochrome b(557)- and FAD-containing protein, catalyzes the regulated and rate-limiting step in the utilization of inorganic nitrogen by higher plants. Enhancing the activity of NR is conducive to reduce the concentration of nitrate in plants. The experiments were conducted to investigate the activity of nitrate reductase in different plant tissues and the relationship between external inducing solution concentration and NR activity (NRA) in plant leaves. Six plant seedlings growing in solution culture were deprived of an external nitrogen (N) supply for 2 weeks. On selected days, three of six plant seedlings were exposed to 50mmol/L NO3- for 0, 2, 5, 8, 11h, and four of the six plant seedlings were exposed to 0, 10, 30, 50mmol/L NO3- for 2h. The NRA was determined in vivo at 538nm using spectrophotometer. The results showed that NRA increased when those plant seedlings were induced by nitrate solution. The change trends of NRA in roots and in leaves of cole, pea and tomato were different during treating time. The NRA in cole leaves was higher than that in its root and in other two plants and increased along with inducing time, but the NRA in bea and tomato was highest when the treating time was 8h and 2h, respectively. The highest NRA in leaves of three kinds of Chinese cabbages and tomato was induced by different concentrations of KNO3 solution. In tomato leaves, the highest NRA was induced by 10 - 30mmol/L KNO3 solution. In three Chinese cabbages, Brassica chinensis L. cv. AJH, XBC and KR-605, the highest NRA was induced by 10, 30, 10mmol/L KNO3 solution, respectively. The results indicated that the response manners of NRA in plants to external nitrate solutions were different. According to these results, the level of NR mRNA in plants could be enhanced by nitrate inducement. The total RNA was isolated from tomato leaves and root which induced by 30mmol/L KNO3 solution for 2h, and NR cDNA was obtained by RT-PCR using the specific primers. The fragments of PCR products were cloned and sequenced. There are 2736 base pairs in the whole cDNA fragment. The deduced protein sequence contains 911 amino acids. The NR gene can be fused to the CaMV 35S promoter, then introduced to higher plants, such as vegetables. It is hoped to decrease drastically the nitrate content of the transgenic plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app