Add like
Add dislike
Add to saved papers

Mechanisms of mechanical heart valve cavitation in an electrohydraulic total artificial heart.

Until now, we have estimated cavitation for mechanical heart valves (MHV) mounted in an electrohydraulic total artificial heart (EHTAH) with tap water as a working fluid. However, tap water at room temperature is not a proper substitute for blood at 37 degrees C. We therefore investigated MHV cavitation using a glycerin solution that was identical in viscosity and vapor pressure to blood at body temperature. In this study, six different kinds of monoleaflet and bileaflet valves were mounted in the mitral position in an EHTAH, and we investigated the mechanisms for MHV cavitation. The valve closing velocity, pressure drop measurements, and a high-speed video camera were used to investigate the mechanism for MHV cavitation and to select the best MHV for our EHTAH. The closing velocity of the bileaflet valves was slower than that of the monoleaflet valves. Cavitation bubbles were concentrated on the edge of the valve stop and along the leaflet tip. It was established that squeeze flow holds the key to MHV cavitation in our study. Cavitation intensity increased with an increase in the valve closing velocity and the valve stop area. With regard to squeeze flow, the Björk-Shiley valve, because it is associated with slow squeeze flow, and the bileaflet valve with low valve closing velocity and small valve stop areas are better able to prevent blood cell damage than the monoleaflet valves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app