Add like
Add dislike
Add to saved papers

Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: structure-activity relationship and molecular mechanisms involved.

The effects of anthocyanidins, the aglycon nucleuses of anthocyanins widely occurring in reddish fruits and vegetables, on the expression of cyclooxygenase-2 (COX-2) were investigated in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. Of five anthocyanidins, delphinidin and cyanidin inhibited LPS-induced COX-2 expression, but pelargonidin, peonidin and malvidin did not. The structure-activity relationship suggest that the ortho-dihydroxyphenyl structure of anthocyanidins on the B-ring appears to be related with the inhibitory actions. Delphinidin, the most potent inhibitor, caused a dose-dependent inhibition of COX-2 expression at both mRNA and protein levels. Western blotting analysis indicated that delphinidin inhibited the degradation of IkappaB-alpha, nuclear translocation of p65 and CCAAT/enhancer-binding protein (C/EBP)delta and phosphorylation of c-Jun, but not CRE-binding protein (CREB). Moreover, delphinidin suppressed the activations of mitogen-activated protein kinase (MAPK) including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 kinase. MAPK inhibitors (U0126 for MEK1/2, SB203580 for p38 kinase and SP600125 for JNK) specifically blocked LPS-induced COX-2 expression. Thus, our results demonstrated that LPS-induced COX-2 expression by activating MAPK pathways and delphinidin suppressed COX-2 by blocking MAPK-mediated pathways with the attendant activation of nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1) and C/EBPdelta. These findings provide the first molecular basis that anthocyanidins with ortho-dihydroxyphenyl structure may have anti-inflammatory properties through the inhibition of MAPK-mediated COX-2 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app