Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Potent modulation of intestinal tumorigenesis in Apcmin/+ mice by the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase.

Cancer Research 2005 June 16
Intracellular polyamine pools are homeostatically maintained by processes involving biosynthesis, catabolism, and transport. Although most polyamine-based anticancer strategies target biosynthesis, we recently showed that activation of polyamine catabolism at the level of spermidine/spermine N(1)-acetyltransferase-1 (SSAT) suppresses tumor outgrowth in a mouse prostate cancer model. Herein, we examined the effects of differential SSAT expression on intestinal tumorigenesis in the Apc(Min/+) (MIN) mouse. When MIN mice were crossed with SSAT-overproducing transgenic mice, they developed 3- and 6-fold more adenomas in the small intestine and colon, respectively, than normal MIN mice. Despite accumulation of the SSAT product, N(1)-acetylspermidine, spermidine and spermine pools were only slightly decreased due to a huge compensatory increase in polyamine biosynthetic enzyme activities that gave rise to enhanced metabolic flux. When MIN mice were crossed with SSAT knock-out mice, they developed 75% fewer adenomas in the small intestine, suggesting that under basal conditions, SSAT contributes significantly to the MIN phenotype. Despite the loss in catabolic capability, tumor spermidine and spermine pools failed to increase significantly due to a compensatory decrease in biosynthetic enzyme activity giving rise to a reduced metabolic flux. Loss of heterozygosity at the Apc locus was observed in tumors from both SSAT-transgenic and -deficient MIN mice, indicating that loss of heterozygosity remained the predominant oncogenic mechanism. Based on these data, we propose a model in which SSAT expression alters flux through the polyamine pathway giving rise to metabolic events that promote tumorigenesis. The finding that deletion of SSAT reduces tumorigenesis suggests that small-molecule inhibition of the enzyme may represent a nontoxic prevention and/or treatment strategy for gastrointestinal cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app