COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Periaqueductal grey CB1 cannabinoid and metabotropic glutamate subtype 5 receptors modulate changes in rostral ventromedial medulla neuronal activities induced by subcutaneous formalin in the rat.

This study was undertaken to analyze the involvement of periaqueductal gray (PAG) cannabinoid or group I metabotropic glutamate receptors in the formalin-induced changes on the rostral ventromedial medulla (RVM) ON- and OFF-cells activities. S.c. injection of formalin into the hind paw produced a transient decrease (4-6 min) followed by a longer increase (25-35 min) in tail flick latencies. Formalin also increased basal activity in RVM ON-cells (42+/-7%) and decreased it in OFF-cells (35+/-4%). Intra-PAG microinjection of (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate (WIN 55,212-2) (2 nmol/rat), a cannabinoid receptor agonist, prevented the formalin-induced changes in RVM cell activities. Higher dosages of WIN 55,212-2 (4-8 nmol/rat) increased the tail flick latencies, delayed the tail flick-related onset to ON-cell burst, and decreased the duration of OFF-cell pause. Furthermore, WIN 55,212-2 at a dosage of 8 nmol/rat decreased RVM ON-cell (57+/-7%) and increased OFF-cell ongoing activities (26+/-4%). These effects were prevented by N-piperidino-5-(4-chlorophenyl)-1-(2,4dichlorophenyl)-4-methyl-3-pyrazolecarboxamide SR141716A, (1 pmol/rat), a CB1 cannabinoid receptor antagonist, or by 2-methyl-6-(phenylethynyl)pyridine (MPEP 20 nmol/rat), a selective mGlu5 glutamate receptor antagonist. T7-(hydroxyimino) cyclopropa[b]chromen-1alpha-carboxylate ethyl ester (CPCOOE/50 nmol/rat) and (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (LY367385, 20 nmol/rat), selective mGlu1 glutamate receptor antagonists, were ineffective in preventing the WIN-induced effects. This study suggests that s.c. injection of formalin modifies RVM neuronal activities and this effect is prevented by PAG cannabinoid receptor stimulation. Moreover, the physiological stimulation of PAG mGlu5, but not mGlu1 glutamate receptors, seems to be required for the cannabinoid-mediated effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app