JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol.

The skin and its major appendages are prominent target organs and potent sources of key players along the classical hypothalamic-pituitary axis, such as corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and alpha melanocyte stimulating hormone (alpha-MSH), and even express key steroidogenic enzymes. Therefore, it may have established local stress response systems that resemble the hypothalamic-pituitary-adrenal (HPA) axis. However, functional evidence that this is indeed the case in normal human skin in situ has still been missing. We show that microdissected, organ-cultured human scalp hair follicles respond to CRH stimulation by up-regulating proopiomelanocortin (POMC) transcription and immunoreactivity (IR) for ACTH and alpha-MSH, which must have been processed from POMC. CRH, alpha-MSH, and ACTH also modulate expression of their cognate receptors (CRH-R1, MC1-R, MC2-R). In addition, the strongest stimulus for adrenal cortisol production, ACTH, also up-regulates cortisol-IR in the hair follicles. Isolated human hair follicles secrete substantial levels of cortisol into the culture medium, and this activity is further up-regulated by CRH. CRH also modulates important functional hair growth parameters in vitro (hair shaft elongation, catagen induction, hair keratinocyte proliferation, melanin production). Finally, human hair follicles display HPA axis-like regulatory feedback systems, since the glucocorticoid receptor agonist hydrocortisone down-regulates follicular CRH expression. Thus, even in the absence of endocrine, neural, or vascular systemic connections, normal human scalp hair follicles directly respond to CRH stimulation in a strikingly similar manner to what is seen in the classical HPA axis, including synthesis and secretion of cortisol and activation of prototypic neuroendocrine feedback loops.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app