COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

HEXIM1 forms a transcriptionally abortive complex with glucocorticoid receptor without involving 7SK RNA and positive transcription elongation factor b.

The HEXIM1 protein has been shown to form a protein-RNA complex composed of 7SK small nuclear RNA and positive transcription elongation factor b (P-TEFb), which is composed of cyclin-dependent kinase 9 (CDK9) and cyclin T1, and to inhibit the kinase activity of CDK9, thereby suppressing RNA polymerase II-dependent transcriptional elongation. Here, we biochemically demonstrate that HEXIM1 forms a distinct complex with glucocorticoid receptor (GR) without RNA, CDK9, or cyclin T1. HEXIM1, through its arginine-rich nuclear localization signal, directly associates with the ligand-binding domain of GR. Introduction of HEXIM1 short interfering RNA and adenovirus-mediated exogenous expression of HEXIM1 positively and negatively modulated glucocorticoid-responsive gene activation, respectively. In the nucleus, HEXIM1 was shown to localize in a distinct compartment from that of the p160 coactivator transcriptional intermediary factor 2. Overexpression of HEXIM1 decreased ligand-dependent association between GR and transcriptional intermediary factor 2. Antisense-mediated disruption of 7SK blunted the negative effect of HEXIM1 on arylhydrocarbon receptor-dependent transcription but not on GR-mediated one, indicating that a class of transcription factors are direct targets of HEXIM1. These results indicate that HEXIM1 has dual roles in transcriptional regulation: inhibition of transcriptional elongation dependent on 7SK RNA and positive transcription elongation factor b and interference with the sequence-specific transcription factor GR via a direct protein-protein interaction. Moreover, the fact that the central nuclear localization signal of HEXIM1 is essential for both of these actions may argue the crosstalk of these functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app