COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin.

BACKGROUND: Lactobacilli are probiotic bacteria that are frequently tested in the management of allergic diseases or gastroenteritis. It is hypothesized that these probiotics have immunoregulatory properties and promote mucosal tolerance, which is in part mediated by regulatory T cells (Treg cells). On the basis of pathogenic or tissue-specific priming, dendritic cells (DC) acquire different T cell-instructive signals and drive the differentiation of naive T H cells into either T H 1, T H 2, or regulatory effector T cells.

OBJECTIVE: We studied in what way different species of lactobacilli prime human DCs for their ability to drive Treg cells.

METHODS: Human monocyte-derived DCs were cultured in vitro with lactobacilli of different species.

RESULTS: Two different species of lactobacilli, Lactobacillus reuteri and Lactobacillus casei , but not Lactobacillus plantarum, prime monocyte-derived DCs to drive the development of Treg cells. These Treg cells produced increased levels of IL-10 and were capable of inhibiting the proliferation of bystander T cells in an IL-10-dependent fashion. Strikingly, both L reuteri and L casei , but not L plantarum , bind the C-type lectin DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN). Blocking antibodies to DC-SIGN inhibited the induction of the Treg cells by these probiotic bacteria, stressing that ligation of DC-SIGN can actively prime DCs to induce Treg cells.

CONCLUSIONS: The targeting of DC-SIGN by certain probiotic bacteria might explain their beneficial effect in the treatment of a number of inflammatory diseases, including atopic dermatitis and Crohn's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app