JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Renal protective effect of molsidomine and L-arginine in ischemia-reperfusion induced injury in rats.

BACKGROUND: Nitric oxide (NO), synthesized from L-arginine by the enzyme NO synthase (NOS) seems to play an ambiguous role during tissue ischemia-reperfusion (I/R) injury. This study was designed to investigate the effects of molsidomine, a NO donor and L-arginine in I/R induced renal failure in rats

METHODS: The protective effect of molsidomine and L-arginine against the damage inflicted by I/R was investigated in Sprague-Dawley rats. In one set of experiments animals were unilaterally nephrectomized, and subjected to 45 min of left renal pedicle occlusion and in another set both the renal pedicles were occluded for 45 min followed by 24 h of reperfusion. Molsidomine (10 mg/kg, p.o.) was administered twice, 30 min before ischemia and 12 h after the reperfusion period, while L-arginine was administered once, 30 min before ischemia. At the end of the reperfusion period, rats were sacrificed. Tissue and urine nitrite levels were measured to assess the total NO levels. Thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) levels, catalase (CAT), and superoxide dismutase (SOD) activities were determined in renal tissue. Serum creatinine and BUN concentrations were measured for the evaluation of renal function.

RESULTS: Ischemic control animals demonstrated severe deterioration of renal function, renal morphology, reduced levels of tissue, and urine NO levels and a significant renal oxidative stress. Pretreatment of animals with molsidomine and L-arginine markedly attenuated renal dysfunction, morphological alterations, improved the tissue as well as urine NO contents, reduced elevated TBAR levels and restored the depleted renal antioxidant enzymes.

CONCLUSIONS: The findings imply that NO play a causal role in I/R induced renal injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app