JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Apoptosis induction by a novel retinoid-related molecule requires nuclear factor-kappaB activation.

Cancer Research 2005 June 2
Nuclear factor-kappaB (NF-kappaB) activation has been shown to be both antiapoptotic and proapoptotic depending on the stimulus and the specific cell type involved. NF-kappaB activation has also been shown to be essential for apoptosis induction by a number of agents. The novel retinoid-related molecule 4-[3-Cl-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC) activates NF-kappaB with subsequent apoptosis in a number of cell types. We have found that NF-kappaB activation is essential for 3-Cl-AHPC-mediated apoptosis. 3-Cl-AHPC activates NF-kappaB through IKKalpha kinase activation and the subsequent degradation of IkappaB alpha. IKKalpha kinase activation is associated with IKKalpha-enhanced binding to HSP90. The HSP90 inhibitor geldanamycin enhances the degradation of IKKalpha and blocks 3-Cl-AHPC activation of NF-kappaB and 3-Cl-AHPC-mediated apoptosis. In addition, inhibition of IkappaB alpha degradation using a dominant-negative IkappaB alpha inhibits 3-Cl-AHPC-mediated apoptosis. NF-kappaB p65 activation is essential for 3-Cl-AHPC apoptosis induction as evidenced by the fact that inhibition of p65 activation utilizing the inhibitor helenalin or loss of p65 expression block 3-Cl-AHPC-mediated apoptosis. NF-kappaB has been shown to be antiapoptotic through its enhanced expression of a number of antiapoptotic proteins including X-linked inhibitor of apoptosis protein (XIAP), c-IAP1, and Bcl-X(L). Whereas exposure to 3-Cl-AHPC results in NF-kappaB activation, it inhibits the expression of XIAP, c-IAP1, and Bcl-X(L) and enhances the expression of proapoptotic molecules, including the death receptors DR4 and DR5 as well as Fas and Rip1. Thus, 3-Cl-AHPC, which is under preclinical development, has pleotrophic effects on malignant cells resulting in their apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app