Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Low salt intake modulates insulin signaling, JNK activity and IRS-1ser307 phosphorylation in rat tissues.

A severe restriction of sodium chloride intake has been associated with insulin resistance and obesity. The molecular mechanisms by which the low salt diet (LS) can induce insulin resistance have not yet been established. The c-jun N-terminal kinase (JNK) activity has been involved in the pathophysiology of obesity and induces insulin resistance by increasing inhibitory IRS-1(ser307) phosphorylation. In this study we have evaluated the regulation of insulin signaling, JNK activation and IRS-1(ser307) phophorylation in liver, muscle and adipose tissue by immunoprecipitation and immunoblotting in rats fed with LS or normal salt diet (NS) during 9 weeks. LS increased body weight, visceral adiposity, blood glucose and plasma insulin levels, induced insulin resistance and did not change blood pressure. In LS rats a decrease in PI3-K/Akt was observed in liver and muscle and an increase in this pathway was seen in adipose tissue. JNK activity and IRS-1(ser307) phosphorylation were higher in insulin-resistant tissues. In summary, the insulin resistance, induced by LS, is tissue-specific and is accompanied by activation of JNK and IRS-1(ser307) phosphorylation. The impairment of the insulin signaling in these tissues, but not in adipose tissue, may lead to increased adiposity and insulin resistance in LS rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app