Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Alpha-lipoic acid suppresses osteoclastogenesis despite increasing the receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio in human bone marrow stromal cells.

Growing evidence has shown a biochemical link between increased oxidative stress and reduced bone density. Although alpha-lipoic acid (alpha-LA) has been shown to act as a thiol antioxidant, its effect on bone cells has not been determined. Using proteomic analysis, we identified six differentially expressed proteins in the conditioned media of alpha-LA-treated human bone marrow stromal cell line (HS-5). One of these proteins, receptor activator of nuclear factor kappaB ligand (RANKL), was significantly up-regulated, as confirmed by immunoblotting with anti-RANKL antibody. ELISA showed that alpha-LA stimulated RANKL production in cellular extracts (membranous RANKL) about 5-fold and in conditioned medium (soluble RANKL) about 23-fold, but had no effect on osteoprotegerin (OPG) secretion. Despite increasing the RANKL/OPG ratio, alpha-LA showed a dose-dependent suppression of osteoclastogenesis, both in a coculture system of mouse bone marrow cells and osteoblasts and in a mouse bone marrow cell culture system, and reduced bone resorption in a dose-dependent manner. In addition, alpha-LA-induced soluble RANKL was not inhibited by matrix metalloprotease inhibitors, indicating that soluble RANKL is produced by alpha-LA without any posttranslational processing. In contrast, alpha-LA had no significant effect on the proliferation and differentiation of HS-5 cells. These results suggest that alpha-LA suppresses osteoclastogenesis by directly inhibiting RANKL-RANK mediated signals, not by mediating cellular RANKL production. In addition, our findings indicate that alpha-LA-induced soluble RANKL is not produced by shedding of membranous RANKL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app