CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Three-dimensional imaging reveals major changes in skin microvasculature in lipoid proteinosis and lichen sclerosus.

BACKGROUND: Lipoid proteinosis is a rare autosomal recessive disorder characterized by deposition of hyaline-like material in several organs, including skin. Pathogenic mutations have been found in the extracellular matrix protein 1 gene (ECM1). Recent studies have disclosed that ECM1 is also a target antigen for autoantibodies in patients with the acquired disease, lichen sclerosus. Both conditions have been reported to show abnormalities in dermal blood vessels but these changes have not been fully assessed.

OBJECTIVE: The purpose of this study was to investigate the architecture of the cutaneous microvasculature in lipoid proteinosis and lichen sclerosus to better determine the role of ECM1 in the skin pathology observed in these disorders.

METHODS: Labeling of skin biopsies (lipoid proteinosis, lichen sclerosus and control skin) with antibodies to type IV collagen and laminin-1 and reconstruction of the dermal blood vessels using laser confocal microscopy and computer imaging.

RESULTS: In both lipoid proteinosis and lichen sclerosus there was reduplication of the basement membranes surrounding blood vessel walls. There were enlarged vessels in the mid and deep dermis that were orientated parallel to the dermal-epidermal junction. In addition, the normal capillary loop network in the dermal papillae, as well as the subcutaneous plexus and transverse connecting vessels were lacking in both disorders.

CONCLUSION: This study demonstrates that skin microvasculature is grossly altered when ECM1 is targeted by inherited mutations (lipoid proteinosis) or acquired autoantibodies (lichen sclerosus) and that this glycoprotein appears to have an important role in regulating blood vessel physiology and anatomy in the skin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app