JOURNAL ARTICLE
REVIEW

Sleep, epilepsy and thalamic reticular inhibitory neurons

Mircea Steriade
Trends in Neurosciences 2005, 28 (6): 317-24
15927688
Thalamic reticular neurons release the potent inhibitory neurotransmitter GABA and their main targets are thalamocortical neurons in the dorsal thalamus. This article focuses on two topics: (i) the role of thalamic reticular neurons in the initiation of spindles, a hallmark oscillation during early sleep stages; and (ii) the reticular-induced inhibition of thalamocortical neurons during cortically generated spike-wave seizures. Although hotly debated during the past decade, the idea of spindle generation by a network of GABAergic reticular neurons was recently supported by in vivo and in computo studies demonstrating interactions between inhibitory reticular neurons that lead to spindle sequences. During spike-wave seizures and electrical paroxysms of the Lennox-Gastaut type, which arise in the neocortex, reticular neurons are powerfully excited through corticofugal projections and they produce prolonged inhibitory postsynaptic potentials in thalamocortical neurons. Thus, GABAergic reticular neurons are crucial in the generation of some sleep rhythms, which produce synaptic plasticity, and in inhibiting external signals through thalamocortical neurons, which leads to unconsciousness during absence epilepsy.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15927688
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"