JOURNAL ARTICLE
REVIEW

Matrix metalloproteinases and free radicals in cerebral ischemia

K Jian Liu, Gary A Rosenberg
Free Radical Biology & Medicine 2005 July 1, 39 (1): 71-80
15925279
Cerebral ischemia induces a complex series of molecular pathways involving signaling mechanisms, gene transcription, and protein formation. The proteases and free radicals involved are important, both individually and in concert, at each of the steps in the injury cascade. Matrix metalloproteinases (MMPs) and serine proteases are essential in the breakdown of the extracellular matrix around cerebral blood vessels and neurons, and their action leads to opening of the blood-brain barrier, brain edema, hemorrhage, and cell death. Reactive oxygen and nitrogen species affect the signaling pathways that induce the enzymes, the stability of the mRNA, and their activation processes. Mice that either lack MMP genes or overexpress free radical-removing genes exhibit diminished cerebral damage after stroke. Drugs that block MMP activity, or are free radical scavengers, significantly reduce ischemic damage. Understanding the relationship between proteases and free radicals in cerebral ischemia is critical for the design of therapeutic agents aimed at controlling cell death in ischemic tissues.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15925279
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"