JOURNAL ARTICLE

Elastic properties, Young's modulus determination and structural stability of the tropocollagen molecule: a computational study by steered molecular dynamics

Alicia Claudia Lorenzo, Ernesto Raúl Caffarena
Journal of Biomechanics 2005, 38 (7): 1527-33
15922764
The aim of this report is to investigate at microscopic level the elastic properties of a tropocollagen-like molecule submitted to linear traction along its longitudinal axis. For this purpose, we performed steered molecular dynamics (SMD) simulations for a wide range of spring constants in order to test the molecular response based on a two-spring model connected in series. An elastic behavior was observed in an elongation range of 2.5-4% of the molecular length, estimating an "effective molecular elastic constant" of 1.02+/-0.20 kcal/mol A2 in this region. Accordingly, a Young's modulus for the tropocollagen molecule of Y=4.8+/-1.0 GPa was calculated. The complex hydrogen bond network was traced along molecular dynamics (MD) and SMD simulations revealing a rearrangement of these interactions preserving the integrity of the molecular structure when submitted to traction. No evidence of the significant role attributed to water bridges for structural stability was detected, on the contrary facts pointed out that the hydrogen bond network might be the responsible.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15922764
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"