COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The protective effect of dantrolene on ischemic neuronal cell death is associated with reduced expression of endoplasmic reticulum stress markers.

Brain Research 2005 June 29
The endoplasmic reticulum (ER) plays an important role in ischemic neuronal cell death. In order to determine the effect of dantrolene, a ryanodine receptor antagonist, on ER stress response and ischemic brain injury, we investigated changes in ER stress-related molecules, that is phosphorylated form of double-stranded RNA-activated protein kinase (PKR)-like ER kinase (p-PERK), phosphorylated form of eukaryotic initiation factor 2alpha (p-eIF2alpha), activating transcription factor-4 (ATF-4), and C/EBP-homologous protein (CHOP), as well as terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) in the peri-ischemic area and ischemic core region of rat brain after transient middle cerebral artery occlusion (MCAO). In contrast to the cases treated with vehicle, the infarct volume and TUNEL-positive cells were significantly reduced at 24 h of reperfusion by treatment with dantrolene. The immunoreactivities for p-PERK, p-eIF2alpha, ATF-4, and CHOP were increased at the ischemic peripheral region after MCAO, which were partially inhibited by dantrolene treatment. The present results suggest that dantrolene significantly decreased infarct volume and provided neuroprotective effect on rats after transient MCAO by reducing ER stress-mediated apoptotic signal pathway activation in the ischemic area.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app