Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Induction of the ABC-transporters Mdr1/P-gp (Abcb1), mrpl (Abcc1), and bcrp (Abcg2) during establishment of multidrug resistance following exposure to mitoxantrone.

Resistance to mitoxantrone is often associated with enhanced drug efflux mediated by members of the superfamily of adenosinetriphosphate-binding cassette (ABC) transporters, i.e. MDR1/P-gp (ABCB1), MRP1 (ABCC1), or BCRP (ABCG2). So far it is unclear whether the same ABC-transporter is always activated from the beginning of mitoxantrone treatment to the end of drug exposure. Here, we demonstrate that the expression of all three extrusion pumps is induced by increasing levels of mitoxantrone resistance, but in the end, merely the overexpression of a dominant single drug transporter, i.e. Mdr1/P-gp, is realized. This upregulation of Mdr1/P-gp was reflected by amplification of the Mdr1/P-gp encoding gene. Short mitoxantrone exposure demonstrated that upregulation of two different transporters, Mdr1/P-gp and Bcrp, was induced. The data indicate that mitoxantrone treatment influences the expression of several ABC-transporters, but in the end, merely a single extrusion pump will be dominant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app