JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Changes in shear stress-related gene expression after experimentally altered venous return in the chicken embryo.

Hemodynamics play an important role in cardiovascular development, and changes in blood flow can cause congenital heart malformations. The endothelium and endocardium are subjected to mechanical forces, of which fluid shear stress is correlated to blood flow velocity. The shear stress responsive genes lung Krüppel-like factor (KLF2), endothelin-1 (ET-1), and endothelial nitric oxide synthase (NOS-3) display specific expression patterns in vivo during chicken cardiovascular development. Nonoverlapping patterns of these genes were demonstrated in the endocardium at structural lumen constrictions that are subjected to high blood flow velocities. Previously, we described in chicken embryos a dynamic flow model (the venous clip) in which the venous return to the heart is altered and cardiac blood flow patterns are disturbed, causing the formation of congenital cardiac malformations. In the present study we test the hypothesis that disturbed blood flow can induce altered gene expression. In situ hybridizations indeed show a change in gene expression after venous clip. The level of expression of ET-1 in the heart is locally decreased, whereas KLF2 and NOS-3 are both upregulated. We conclude that venous obstruction results in altered expression patterns of KLF2, ET-1, and NOS-3, suggestive for increased cardiac shear stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app