Add like
Add dislike
Add to saved papers

Environmental factors determining the trace-level sorption of silver and thallium to soils.

Silver (Ag) and thallium (Tl) are nonessential elements that can be highly toxic to a number of biota even when present in the environment at trace levels. In spite of that, the literature on the chemistry and fate of Ag and Tl in soils is extremely scanty. In that context, the key objective of this research was to compare the sorption characteristics of trace amounts of Ag and Tl on a range of soils and minerals. A second objective was to determine the extent to which the composition and surface chemistry of the sorbents, as well as other environmental factors (simulated acid rain application and the presence of competing ions like K+ and NH4+) influence the sorption and lability of Ag and Tl. To this end, short-term and long-term sorption isotherms were generated under batch conditions for trace levels of Ag and Tl onto three illite-rich mineral soils from central New York (silt loam and fine sandy loam), a peaty-muck soil drained for agricultural use, and soil minerals (ferrihydrite and birnessite). Silver sorbed more strongly than thallium to all the soils. The peaty-muck soil sorbed Ag more strongly than the mineral soils, confirming that silver sorption to soils is dominated by soil organic matter either through exchange or complexation. The organic matter-rich soil's retention of Tl, however, was similar to that of the sandy soil. Amounts of Ag and Tl sorbed to the mineral soils increased after a 1-year incubation period. Whereas Ag sorption to the peaty-muck soil also increased with time, Tl sorption was unaffected. Short batch studies indicated that high amounts of Tl sorb to birnessite (30% by mass). However, subsequent X-ray diffraction (XRD) analysis of the solid did not detect the presence of any Tl3+ as Tl2O3 on the MnO4. In contrast, TlI was relatively poorly sorbed on noncrystalline ferrihydrite at pH 5.1 (1.5% by mass). Thus, Mn oxides may play a role in Tl retention by soils; whereas, contrary to previous reports, iron oxides do not effectively sorb Tl. Acid rain and addition of potassium (K+) and ammonium (NH4+) as competing ions had no long-term effect on Ag or Tl sorption. Thallium remaining in the all the batch sorption solutions, as determined by flame atomic absorption spectroscopy (FAAS) and differential pulse anodic stripping voltametry (DPASV), was completely labile, which may have important environmental consequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app