JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Isolation and characterization of multipotent skin-derived precursors from human skin.

Stem Cells 2005 June
We have previously isolated, expanded, and characterized a multipotent precursor cell from mammalian dermis (termed skin-derived precursors [SKPs]) that can differentiate into both neural and mesodermal progeny. In this study, we report the isolation, expansion, and characterization of a similar precursor cell from neonatal human foreskin tissue. Like their rodent counterparts, human SKPs grew in suspension as spheres in the presence of the mitogens fibroblast growth factor 2 and epidermal growth factor and expressed nestin, fibronectin, vimentin, and characteristic embryonic transcription factors. Human SKPs could be maintained in culture for long periods of time and would still differentiate into neurons, glia, and smooth muscle cells, including cells with the phenotype of peripheral neurons and Schwann cells. Clonal analysis indicated that single SKP cells were multipotent and could give rise to all of these progeny. Moreover, human SKPs apparently derive from an endogenous precursor within human foreskin; a subpopulation of dissociated primary foreskin cells could differentiate into neurons, a cell type never seen in skin, and the initial spheres to develop from skin expressed the same markers and had the same potential as do passaged SKPs. Together, these data indicate that SKPs are an endogenous multipotent precursor cell present in human skin that can be isolated and expanded and differentiate into both neural and mesodermal cell types.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app