JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mitogenic effects of the up-regulation of minichromosome maintenance proteins in anaplastic thyroid carcinoma.

CONTEXT: Anaplastic thyroid carcinomas (ATC) are among the most aggressive human malignancies and are characterized by high mitotic activity. Minichromosome maintenance proteins (MCM) 2-7 are required to initiate eukaryotic DNA replication, and their overexpression has been associated with dysplasia and malignancy.

OBJECTIVE: In an attempt to cast light on the mechanisms governing ATC, we evaluated MCM5 and MCM7 expression in human normal, papillary (PTC), and anaplastic thyroid samples, as well as in primary culture cells and transgenic mouse models.

RESULTS: MCM5 and MCM7 expression was high in 65% of ATC and negligible in normal thyroid tissue and papillary thyroid carcinomas. In ATC, high MCM5 and MCM7 expression was paralleled by high levels of MCM2 and MCM6. An analysis of human ATC primary cell cultures and of a transgenic mouse model of ATC confirmed these findings. An increased transcription rate accounted for MCM7 up-regulation, because the activity of the MCM7 promoter was more than 10-fold higher in ATC cells compared with normal thyroid cells. Adoptive overexpression of wild-type p53, but not of its inactive (R248W and R273H) mutants, strongly down-regulated transcription from the MCM7 promoter, suggesting that p53 knock-out contributes to MCM7 up-regulation in ATC. Treatment with small inhibitory duplex RNAs, which decrease MCM7 protein levels, reduced the rate of DNA synthesis in ATC cells.

CONCLUSION: MCM proteins are overexpressed in ATC and sustain the high proliferative capacity of ATC cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app