JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of hexoses and gonadotrophin supplementation on bovine oocyte nuclear maturation during in vitro maturation in a synthetic follicle fluid medium.

In vitro oocyte maturation (IVM) culture conditions have been relatively unchanged over the past few decades and remain suboptimal. In contrast, studies of the in vivo environment have led to significant improvements to in vitro embryo culture technologies. The aim of the present study was to determine the effect of maturing bovine cumulus-oocyte complexes (COCs) in medium based on the composition of bovine follicular fluid (Bovine VitroMat; Cook Australia, Eight Mile Plain, Qld, Australia). In particular, the effect of different glucose concentrations and glucosamine supplementation on meiotic maturation was determined. Culturing COCs in the presence of gonadotrophins in Bovine VitroMat, containing either physiological glucose concentrations (2.3 mM) or 5.6 mM (equivalent to levels in Tissue Culture Medium 199 (TCM199)) supplemented with glucosamine resulted in comparable cumulus expansion to COCs cultured in TCM199 plus gonadotrophins. However, nuclear maturation was 1.3-fold lower in Bovine VitroMat cultures containing 2.3 mM glucose compared with 5.6 mM glucose and this effect was independent of glucosamine supplementation. Investigations into the effects of different glucose concentrations and gonadotrophin supplementation during the initial 6 h of maturation demonstrated that COCs cultured in Bovine VitroMat with 5.6 mM glucose without gonadotrophins had a twofold acceleration of the rate of meiotic resumption, yet the rate of polar body formation was decreased by approximately 20% compared with cultures in 2.3 mM glucose and TCM199. However, this effect was not seen when COCs were cultured for the initial 16 h in Bovine VitroMat + 5.6 mM minus gonadotrophins or in Bovine VitroMat + 2.3 mM glucose +/- gonadotrophins. These data demonstrate that glucose concentrations and the timing of the introduction of gonadotrophin during IVM have variable effects on nuclear maturation. Manipulation of glucose concentrations may be a mechanism to influence oocyte meiotic progression and may lead to the development of improved IVM systems, allowing for an increased developmental capacity of bovine oocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app