JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transcriptional regulation of mouse 6-phosphogluconate dehydrogenase by ADD1/SREBP1c.

6-Phosphogluconate dehydrogenase (6PGDH) constitutes the pentose phosphate pathway and produces NADPH. 6PGDH is also considered as a lipogenic gene since NADPH is a pivotal cofactor for lipogenesis. Thus, it is important to elucidate how 6PGDH is regulated by various signals related to energy homeostasis. Here, we provide several evidences that ADD1/SREBP1c regulates the expression of mouse 6PGDH gene. DNase I footprinting assay and point mutation studies revealed that the E-box (CANNTG) motif in the promoter of mouse 6PGDH is an important cis-regulatory element for ADD1/SREBP1c. 6PGDH mRNA is highly expressed in white adipose tissue and tightly modulated by nutritional status. Furthermore, we found that ADD1/SREBP1c mediates insulin-dependent 6PGDH expression and that PI3-kinase is an important linker for its regulation. Taken together, these data suggest that ADD1/SREBP1c is a key transcription factor for 6PGDH gene expression and would coordinate glucose metabolism and lipogenesis for energy homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app