JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Role of AMP--activated protein kinase in the control of glucose homeostasis.

Skeletal muscle insulin resistance is a hallmark feature of Type 2 diabetes. Physical exercise/muscle contraction elicits an insulin-independent increase in glucose transport and perturbation of this pathway may bypass defective insulin signaling. To date, the exercise-responsive signaling molecules governing glucose metabolism in skeletal muscle are largely unknown. AMP-activated protein kinase (AMPK) has been suggested as one of the exercise-responsive signaling molecules involved in glucose homeostasis and consequently it has been heavily explored as a pharmacological target for the treatment of Type 2 diabetes. AMPK exists in heterotrimeric complexes composed of a catalytic alpha-subunit and regulatory beta- and gamma-subunits. The gamma3-isoform of AMPK is expressed specifically in skeletal muscle of humans and rodents and this tissue specific expression pattern offers selectivity in AMPK action. Furthermore, mutations in the AMPK gamma3-isoform may provide protection from diet-induced insulin resistance by increasing lipid oxidation in the presence of increased lipid supply. This review highlights the current understanding of the role of the regulatory AMPK gamma3-isoform in the control of skeletal muscle metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app