JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of glial transplantation on functional recovery following acute spinal cord injury.

Numerous efforts have been made to maximize the efficacy of treatment for spinal cord injury (SCI). Recently, oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells have been reported to remyelinate focal areas of demyelinated spinal cord in adult rats. We conducted a study to investigate the therapeutic potential of transplantation of O-2A cells in a rat model of acute SCI. SCI was induced with an NYU Impactor at T9 of rats. O-2A cells labeled with bromodeoxyuridine (BrdU) were transplanted into sites of SCI at 1 week after the induction of SCI. At 6 weeks after cell transplantation, a behavioral test showed significant functional improvement in animals that had received O-2A-cell transplants as compared to animals given cell-culture medium alone. An electrophysiological study revealed that the transplants did not improve the amplitude or latency of somatosensory evoked potentials, but a recording of motor evoked potentials showed that the latency of these potentials in the O-2A-cell-transplant group was significantly shorter than that in the group treated with cell-culture medium. Following transplantation of BrdU-labeled O-2A cells, cells positive for BrdU were detected at and near sites of SCI. Cells labeled for both BrdU and 2',3' -cyclic nucleotide-3-phosphodiesterase were also detected, showing that the transplanted O-2A cells differentiated into oligodendrocytes. By contrast, cells labeled for BrdU and glial fibrillary acidic protein, or for neuronal nuclei antigen, were not detected. Furthermore, a tract-tracing study showed that numbers of retrogradely labeled neurons increased in areas of the brain stem after O-2A-cell transplantation. The study data showed that after being transplanted into an animal with SCI, O-2A cells migrated to the area adjacent to the site of injury and differentiated into oligodendrocytes. The behavioral test and the electrophysiological and morphological studies showed that transplantation of O-2A cells may play an important role in functional recovery and the regeneration of axons after SCI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app