Dose heterogeneity in the target volume and intensity-modulated radiotherapy to escalate the dose in the treatment of non-small-cell lung cancer

Marco Schwarz, Markus Alber, Joos V Lebesque, Ben J Mijnheer, Eugène M F Damen
International Journal of Radiation Oncology, Biology, Physics 2005 June 1, 62 (2): 561-70

PURPOSE: To quantify the dose escalation achievable in the treatment of non-small-cell lung cancer (NSCLC) by allowing dose heterogeneity in the target volume or using intensity-modulated radiotherapy (IMRT), or both.

METHODS AND MATERIALS: Computed tomography data and contours of 10 NSCLC patients with limited movements of the tumor and representing a broad spectrum of clinical cases were selected for this study. Four irradiation techniques were compared: two conformal (CRT) and two IMRT techniques, either prescribing a homogeneous dose in the planning target volume (PTV) (CRT(hom) and IMRT(hom)) or allowing dose heterogeneity (CRT(inhom) and IMRT(inhom)). The dose heterogeneity was allowed only toward high doses, i.e., the minimum dose in the target for CRT(inhom) and IMRT(inhom) could not be lower than for the corresponding homogeneous plan. The dose in the PTV was escalated (fraction size of 2.25 Gy) until either an organ at risk reached the maximum allowed dose or the mean PTV dose reached a maximum level set at 101.25 Gy.

RESULTS: When small and convex tumors were irradiated, CRT(hom) could achieve the maximum dose of 101.25 Gy, whereas for bigger and/or concave PTVs the dose level achievable with CRT(hom) was significantly lower, in 1 case even below 60 Gy. The CRT(inhom) allowed on average a 6% dose escalation with respect to CRT(hom). The IMRT(hom) achieved in all except 1 case a mean PTV dose of at least 75 Gy. The gain in mean PTV dose of IMRT(hom) with respect to CRT(hom) ranged from 7.7 to 14.8 Gy and the IMRT(hom) plans were always more conformal than the corresponding CRT(hom) plans. The IMRT(inhom) provided an additional advantage over IMRT(hom) of at least 5 Gy. For all CRT plans the achievable dose was determined by the lung dose threshold, whereas for more than half of the IMRT plans the esophagus was the dose-limiting organ. The IMRT plans were deliverable with 10-12 segments per beam and did not produce an increase of lung volume irradiated at low doses (<20 Gy).

CONCLUSIONS: The dose in NSCLC treatments can be escalated by loosening the constraints on maximum dose in the target volume or using IMRT, or both. For large and concave tumors, an average dose escalation of 6% and 17% was possible when dose heterogeneity and IMRT were applied alone. When they were combined, the average dose increase was as high as 35%. Intensity-modulated RT delivered in a static mode can produce homogeneous dose distributions in the target and does not lead to an increase of lung volume receiving (very) low doses, even down to 5 Gy.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"