The human peroxisome proliferator-activated receptor delta gene is a primary target of 1alpha,25-dihydroxyvitamin D3 and its nuclear receptor

Thomas W Dunlop, Sami Väisänen, Christian Frank, Ferdinand Molnár, Lasse Sinkkonen, Carsten Carlberg
Journal of Molecular Biology 2005 June 3, 349 (2): 248-60
Peroxisome proliferator-activated receptor (PPAR) delta is the most widely expressed member of the PPAR family of nuclear receptor fatty acid sensors. Real-time PCR analysis of breast and prostate cancer cell lines demonstrated that PPARdelta expression was increased 1.5 to 3.2-fold after three hours stimulation with the natural vitamin D receptor (VDR) agonist, 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). In silico analysis of the 20 kb of the human PPARdelta promoter revealed a DR3-type 1alpha,25(OH)2D3 response element approximately 350 bp upstream of the transcription start site, which was able to bind VDR-retinoid X receptor (RXR) heterodimers and mediate a 1alpha,25(OH)2D3-dependent upregulation of reporter gene activity. Chromatin immuno-precipitation assays demonstrated that a number of proteins representative for 1alpha,25(OH)2D3-mediated gene activation, such as VDR, RXR and RNA polymerase II, displayed a 1alpha,25(OH)2D3-dependent association with a region of the proximal PPARdelta promoter that contained the putative DR3-type VDRE. This was also true for other proteins that are involved in or are the subject of chromatin modification, such as the histone acetyltransferase CBP and histone 4, which displayed ligand-dependent association and acetylation, respectively. Finally, real-time PCR analysis demonstrated that 1alpha,25(OH)2D3 and the synthetic PPARdelta ligand L783483 show a cell and time-dependent interference in each other's effects on VDR mRNA expression, so that their combined application shows complex effects on the induction of VDR target genes, such as CYP24. Taken together, we conclude that PPARdelta is a primary 1alpha,25(OH)2D3-responding gene and that VDR and PPARdelta signaling pathways are interconnected at the level of cross-regulation of their respective transcription factor mRNA levels.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"