JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pirfenidone inhibits lung allograft fibrosis through L-arginine-arginase pathway.

Transplant-related lung fibrosis is characterized by excessive fibro-collagenous deposition. Induction of arginase, an enzyme that metabolizes L-arginine to urea and L-ornithine, is vital for collagen synthesis. Pirfenidone is an investigational anti-fibrotic agent shown to be effective in blocking pulmonary fibrosis. The purpose of this study was to determine if pirfenidone was protective against the development of fibro-collagenous injury in rat lung orthotopic transplants through altering L-arginine-arginase metabolic pathways. Lung transplants were performed using Lewis donors and Sprague-Dawley recipients (allografts) or the same strain (isografts). Recipients were given pirfenidone (0.5% chow) 1-21-day post-transplantation. A significantly increased peak airway pressure (PawP) with excessive collagen deposition was found in untreated lung allografts. Pirfenidone treatment decreased PawP and collagen content in lung allografts. The beneficial effects were associated with downregulation of arginase protein expression and activity. In addition, pirfenidone decreased endogenous transforming growth factor (TGF)-beta level in lung allografts, and TGF-beta stimulated arginase activity in a dose-dependent manner in both lung tissue and fibroblasts. These results suggest that pirfenidone inhibits local arginase activity possibly through suppression of endogenous TGF-beta, hence, limiting the development of fibrosis in lung allografts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app