Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Appetite-suppressing effects of ammonia exposure in rainbow trout associated with regional and temporal activation of brain monoaminergic and CRF systems.

To assess whether the brain's monoaminergic and/or corticotropin-releasing factor (CRF) systems may be involved in mediating the appetite-suppressing effects of high environmental ammonia levels, we exposed rainbow trout to one of four NH4Cl treatments (0, 500, 750, 1000 micromol l(-1)) for 24 or 96 h and monitored changes in food intake, brain serotonin (5-HT) and dopamine (DA) activity, CRF and urotensin I (UI) mRNA levels, and plasma cortisol levels. Food intake decreased in a dose-dependent manner after 24 h of ammonia exposure and partially recovered in all groups after 96 h. Ammonia also elicited dose-dependent increases in serotonergic activity in the hypothalamus (HYP), telencephalon (TEL) and posterior brain (PB). Whereas the increase in serotonergic activity was timed with the 24 h food intake inhibition, TEL and PB serotonergic activity increased after 96 h. In the PB, exogenous ammonia also elicited dose-dependent increases in dopaminergic activity after both 24 and 96 h of exposure. Transient increases in TEL CRF and UI mRNA levels, HYP UI mRNA levels, and plasma cortisol concentrations were evidence that the hypothalamic-pituitary-interrenal (HPI) stress axis was primarily stimulated in the first 24 h of ammonia exposure when food intake was depressed. Overall, the transient nature of the appetite suppression during chronic ammonia exposure, and the time-dependent changes in brain monoaminergic and CRF systems, implicate 5-HT, DA, CRF and UI as potential mediators of the appetite-suppressing effects of ammonia. Among these anorexigenic signals, our results specifically identify hypothalamic 5-HT as a potentially key neurobiological substrate for the regulation of food intake during exposure to high external ammonia concentrations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app