JOURNAL ARTICLE

Attenuation correction of myocardial SPECT perfusion images with low-dose CT: evaluation of the method by comparison with perfusion PET

Eva Fricke, Harald Fricke, Reiner Weise, Annett Kammeier, Ralph Hagedorn, Norbert Lotz, Oliver Lindner, Diethelm Tschoepe, Wolfgang Burchert
Journal of Nuclear Medicine 2005, 46 (5): 736-44
15872344

UNLABELLED: In cardiac SPECT, specificity is significantly affected by artifacts due to photon absorption. As the success of attenuation correction depends mainly on high-quality attenuation maps, SPECT low-dose CT devices are promising. We wanted to evaluate the usefulness of a SPECT low-dose CT device in myocardial perfusion scintigraphy. For the evaluation of attenuation correction systems, primarily comparisons with coronary angiography are used. Because the comparison of a method showing myocardial perfusion with an investigation displaying the morphology of vessels yields some difficulties, we chose perfusion PET with (13)N-ammonia as the reference method.

METHODS: We prospectively analyzed 23 patients (6 women, 17 men) with known or suspected coronary artery disease. Rest studies and studies under pharmacologic stress with adenosine were performed. After simultaneous injection of (13)N-ammonia and (99m)Tc-sestamibi, a dynamic PET acquisition was started. The SPECT study was performed about 2 h later. Based on 20-segment polar maps, SPECT with and without attenuation correction was compared with PET-derived perfusion values and ammonia uptake values. The PET uptake images were also smoothed to adjust their resolution to the resolution of the SPECT images.

RESULTS: The concordance of SPECT and PET studies was improved after attenuation correction. The main effect was seen in the inferior wall. Especially in the apex and anterolateral wall, there were differences between SPECT and PET studies not attributable to attenuation artifacts. Because these differences diminished after smoothing of the PET studies, they might be due to partial-volume effects caused by the inferior resolution of the SPECT images.

CONCLUSION: The x-ray-derived attenuation correction leads to SPECT images that represent myocardial perfusion more accurately than nonattenuation-corrected SPECT images. The benefit of the method is seen primarily in the inferior wall. The low resolution of the SPECT system may lead to artifacts due to partial-volume effects. This phenomenon must be considered when perfusion PET is used as a reference method to investigate the effect of attenuation correction.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15872344
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"