Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Respiratory muscle strength may explain hypoxia-induced decrease in vital capacity.

PURPOSE: High altitude exposure has consistently been reported to decrease forced vital capacity (FVC), but the mechanisms accounting for this observation remain incompletely understood. We investigated the possible contribution of a hypoxia-related decrease in respiratory muscle strength.

METHODS: Maximal inspiratory and expiratory pressures (MIP and MEP), sniff nasal inspiratory pressure (SNIP), FVC, peak expiratory flow rate (PEF), and forced expiratory volume in 1 s (FEV1) were measured in 15 healthy subjects before and after 1, 6, and 12 h of exposure to an equivalent altitude of 4267 m in a hypobaric chamber.

RESULTS: Hypoxia was associated with a progressive decrease in FVC (5.59 +/- 0.24 to 5.24 +/- 0.26 L, mean +/- SEM, P < 0.001), MIP (130 +/- 10 to 114 +/- 8 cm H2O, P < 0.01), MEP (201 +/- 12 to 171 +/- 11 cm H2O, P < 0.001), and SNIP (125 +/- 7 to 98 +/- 7 cm H2O, P < 0.001). MIP, MEP, and SNIP were strongly correlated to FVC (r ranging from 0.77 to 0.92). FEV1 didn't change, and PEF increased less than predicted by the reduction in air density (11-20% of sea-level value compared with 32% predicted).

CONCLUSION: We conclude that a decrease in respiratory muscle strength may contribute to the decrease in FVC observed at high altitude.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app