COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

5-hydroxytryptamine 1A (5-HT1A) but not 5-HT3 receptor is involved in mediating the nucleus submedius 5-HT-evoked antinociception in the rat.

Brain Research 2005 June 8
Our previous studies have indicated that the thalamic nucleus submedius (Sm) is involved in modulation of nociception as part of an ascending component of an endogenous analgesic system consisting of spinal cord-Sm-ventrolateral orbital cortex (VLO)-periaqueductal gray (PAG)-spinal cord loop. Microinjection of 5-hydroxytryptamine (5-HT) into Sm produces antinociception and this effect is blocked by 5-HT(2) receptor antagonist. The aim of the present study was to examine whether the 5-HT(1) and 5-HT(3) receptors were also involved in the Sm 5-HT-evoked antinociception. Nociception was assessed in lightly anesthetized rats with radiant-heat-evoked tail flick (TF). 5-HT(1A) and 5-HT(3) receptor antagonists were microinjected into the Sm alone or in combination with a microinjection of 5-HT into the same Sm site. 5-HT(1A) receptor antagonist p-MPPI (0.87 nmol) facilitated the TF reflex; a lower dose (0.43 nmol) of p-MPPI significantly attenuated the Sm 5-HT-evoked inhibition of TF reflex. Microinjection of the 5-HT(3) receptor antagonist LY-278,584 (12 nmol) had no effect either on the TF reflex or on the Sm 5-HT-evoked inhibition. These results suggest that 5-HT(1A) receptor but not 5-HT(3) receptor is involved in mediating the 5-HT-evoked antinociception. Possible mechanisms of Sm 5-HT-induced descending antinociception are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app