JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Tissue factor enhances protease-activated receptor-2-mediated factor VIIa cell proliferative properties.

In addition to its hemostatic functions, factor (F)VIIa exhibits cell proliferative properties as seen in angiogenesis and tumor growth. A role for tissue factor (TF) and protease-activated receptors (PAR)-1 and -2 in cell proliferation remain to be clarified. We tested the hypothesis that FVIIa induces cell proliferation by a mechanism involving TF and PAR-2. Human recombinant FVIIa induced cell proliferation of human BOSC23 cells transfected with plasmid containing human TF DNA sequence. Because DNA primase 1 (PRIM1) plays an essential role in cell proliferation, we used the cloned PRIM1 promoter upstream of the reporter gene chloramphenicol acetyl transferase (CAT) to elucidate the mode of action of FVIIa. FVIIa evoked a dose-dependent increase in cell proliferation and PRIM1 induction, which were markedly potentiated (4-5-fold) by the presence of TF and abrogated by TF antisense oligonucleotide. PRIM1 induction by FVIIa was also abolished by PAR-2 but not by PAR-1 antisense. In contrast, thrombin induced a small increase in CAT activity which was unaffected by TF, but was prevented only by PAR-1 antisense as well as the thrombin inhibitor hirudin. Proliferative properties of FVIIa were associated with a TF-dependent increase in intracellular calcium and were mediated by a concordant phosphorylation of p44/42 MAP kinase. In conclusion, data reveal that FVIIa induces PRIM1 and ensuing cellular proliferation via a TF- and of the PARs entirely PAR-2-dependent pathway, in distinction to that of thrombin which is PAR-1-dependent and TF-independent. We speculate that FVIIa-TF-PAR-2 inhibitors may be effective in suppressing cell proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app