Add like
Add dislike
Add to saved papers

Ultrafast energy-electron transfer cascade in a multichromophoric light-harvesting molecular square.

A molecular square with dimensions of about 4 nm, incorporating sixteen pyrene chromophores attached to four ditopic bay-functionalized perylene bisimide chromophores, has been synthesized by coordination to four Pt(II) phosphine corner units and fully characterized via NMR spectroscopy and ESI-FTICR mass spectrometry. Steady-state and time-resolved emission as well as femtosecond transient absorption studies reveal the presence of a highly efficient (>90%) and fast photoinduced energy transfer (k(en) approximately equal to 5.0 x 10(9) s(-1)) from the pyrene to the perylene bisimide chromophores and a very fast and efficient electron transfer (>94%, k(et) approximately equal to 5 x 10(11) up to 43 x 10(11) s(-1)). Spectrotemporal parametrization indicates upper excited-state electron-transfer processes, various energy and electron-transfer pathways, and chromophoric heterogeneity. Temperature-dependent time-resolved emission spectroscopy has shown that the acceptor emission lifetime increases with decreasing temperature from which an electron-transfer barrier is obtained. The extremely fast electron-transfer processes (substantially faster and more efficient than in the free ligand) that are normally only observed in solid materials, together with the closely packed structure of 20 chromophoric units, indicate that we can consider the molecular square as a monodisperse nanoaggregate: a molecularly defined ensemble of chromophores that partly behaves like a solid material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app