Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Farnesyltransferase inhibitors induce DNA damage via reactive oxygen species in human cancer cells.

Cancer Research 2005 May 2
Farnesyltransferase inhibitors (FTIs) possess antitumor activity. Based on recent findings, we hypothesized that FTIs induce reactive oxygen species (ROS) that damage DNA, leading to DNA damage responses. To test this hypothesis, we investigated the effects of FTIs on the generation of ROS, DNA double-strand breaks (DSB), DNA damage responses, and RhoB, and the effects of quenching ROS on these FTI effects. We evaluated four FTIs in human cancer cell lines of different tissue origins. We found that FTIs induced ROS and DSBs. Suppressing expression of the beta-subunit of farnesyltransferase with siRNA did not induce ROS, but slightly attenuated the ROS induced by FTIs. N-acetyl-L-cysteine (NAC), but not caspase inhibitors, blocked FTI-induced DSBs, suggesting that the DSBs were caused by ROS and did not result from apoptosis. The DSBs led to DNA damage responses. H2AX became phosphorylated and formed nuclear foci. The DNA-damage-sensing molecules involved were probably ataxia-telangiectasia mutated protein (ATM) and DNA-dependent protein kinase (DNA-PK) but not ATM- and Rad3-related protein (ATR). Key components of the homologous recombination and nonhomologous end joining repair pathways (DNA-PK, BRCA1, and NBS1) underwent phosphorylation and formed nuclear foci. RhoB, a mediator of the antineoplastic effect of FTIs and a protein inducible by DNA damage, was increased by FTIs. This increase was blocked by NAC. We concluded that FTIs induced oxidative DNA damage by inducing ROS and initiated DNA damage responses, including RhoB induction, and there was a complex relationship among FTIs, farnesyltransferase, ROS, and RhoB. Our data also imply that inhibitors of DNA repair may accentuate the clinical efficacy of FTIs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app