Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-kappaB activity.

Cancer Research 2005 May 2
Breast cancer metastasis suppressor 1 (BRMS1) functions as a metastasis suppressor gene in breast cancer and melanoma cell lines, but the mechanism of BRMS1 suppression remains unclear. We determined that BRMS1 expression was inversely correlated with that of urokinase-type plasminogen activator (uPA), a prometastatic gene that is regulated at least in part by nuclear factor-kappaB (NF-kappaB). To further investigate the role of NF-kappaB in BRMS1-regulated gene expression, we examined NF-kappaB binding activity and found an inverse correlation between BRMS1 expression and NF-kappaB binding activity in MDA-MB-231 breast cancer and C8161.9 melanoma cells stably expressing BRMS1. In contrast, BRMS1 expression had no effect on activation of the activator protein-1 transcription factor. Further, we showed that suppression of both constitutive and tumor necrosis factor-alpha-induced NF-kappaB activation by BRMS1 may be due to inhibition of IkappaBalpha phosphorylation and degradation. To examine the relationship between BRMS1 and uPA expression in primary breast tumors, we screened a breast cancer dot blot array of normalized cDNA from 50 breast tumors and corresponding normal breast tissues. There was a significant reduction in BRMS1 mRNA expression in breast tumors compared with matched normal breast tissues (paired t test, P < 0.0001) and a general inverse correlation with uPA gene expression (P < 0.01). These results suggest that at least one of the underlying mechanisms of BRMS1-dependent suppression of tumor metastasis includes inhibition of NF-kappaB activity and subsequent suppression of uPA expression in breast cancer and melanoma cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app