Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Calcium dependence of axotomized sensory neurons excitability.

Hyperexcitability of axotomized dorsal root ganglion neurons is thought to play a role in neuropathic pain. Numerous changes in ionic channels expression or current amplitude are reported after an axotomy, but to date no direct correlation between excitability of axotomized sensory neurons and ionic channels alteration has been provided. Following sciatic nerve injury, we examined, under whole-cell patch clamp recording, the effects of calcium homeostasis on the electrical activity of axotomized medium-sized sensory neurons isolated from lumbar dorsal root ganglia of adult mice. Axotomy induced an increase in excitability of medium sensory neurons among which 25% develop a propensity to fire repetitively. The condition necessary to get burst discharge in axotomized neurons was the presence of a high intracellular Ca2+ buffer concentration. The main effect was to amplify the increase in threshold current and apparent input resistance induced by axotomy. These data supply evidence for a role of Ca2+-dependent mechanisms in the control of excitability of axotomized sensory neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app