JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Heavy charged particles produce a bystander effect via cell-cell junctions.

Uchū Seibutsu Kagaku 2004 December
Radiation-induced damage to living cells results from either a direct hit to cellular DNA, or from indirect action which leads to DNA damage from radiation produced radicals. However, in recent years there is evidence that biological effects such as cell killing, mutation induction, chromosomal damage and modification of gene expression can occur in a cell population exposed to low doses of alpha particles. In fact these doses are so low that not all cells in the population will be hit directly by the radiation. Using a precision alpha-particle microbeam, it has been recently demonstrated that irradiated target cells can induce a bystander mutagenic response in neighboring "bystander" cells which were not directly hit by alpha particles. Furthermore, these results suggest that gap-junction mediated cell-to-cell communication plays a critical role in this bystander phenomenon. The purpose of this section is to describe recent studies on bystander biological effects. The recent work described here utilized heavy charged particles for irradiation, and investigated the role of gap-junction mediated cell-cell communication in this phenomenon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app