COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

The preparation of Zn2+-doped TiO(2) nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities.

Chemosphere 2005 June
The photocatalytic oxidation of the organic pollutants with TiO(2) as photocatalyst has been widely studied in the world, and many achievements have been made. The degradation of pollutants is highly related to the photocatalytic activity of TiO(2). It is demonstrated that doping ions to TiO(2) is one way to enhance the photocatalytic activity of TiO(2). In this paper, Zn(2+)-doped TiO(2) nanoparticles were prepared through sol-gel and solid phase reaction methods, characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The photocatalytic activity of the elaborated powders was studied following the degradation of Rhodamine B. The results showed that the photocatalytic activity of Zn(2+)-doped TiO(2) prepared by sol-gel method is close to that of pure TiO(2) particles, however, the photocatalytic activity of Zn(2+)-doped TiO(2) prepared by solid phase reaction method is much higher than that of pure TiO(2) particles. The most efficient degradation of Rhodamine B was found with TiO(2) particles doped with 0.5% Zn(2+) in mole and calcined at 500 degrees C. Also the reason for the enhancement of the photocatalytic activity of TiO(2) by Zn(2+) doping through solid phase reaction method was discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app