JOURNAL ARTICLE

Redox regulation of the transcriptional repressor Bach1

Makie Ishikawa, Satoshi Numazawa, Takemi Yoshida
Free Radical Biology & Medicine 2005 May 15, 38 (10): 1344-52
15855052
Bach1 is a transcriptional repressor of heme oxygenase-1, one of the most inducible phase 2 proteins. Bach1 binds in conjunction with a small Maf protein to tandem repeats of the antioxidant response element (ARE) and quenches the target gene expression. On the other hand, the transactivator Nrf2 binds and up-regulates the ARE-governed gene expression. By using a sulfhydryl oxidizing agent, diamide, here we provide evidence which indicates that the Bach1 function is regulated by the redox state. Diamide showed restricted Nrf2 nuclear translocation and ARE-driven reporter activity but reversed the ARE transcriptional activity suppressed by ectopically expressed Bach1. Substitution of the conserved cysteine residue in the DNA binding domain of Bach1 to serine (C574S mutant) caused a refractory response to the diamide-mediated reactivation of the Bach1-suppressed reporter activity. Moreover, diamide induced cytoplasmic translocation of the GFP-Bach1 fusion protein but failed to translocate the fusion protein consisting of the C574S mutant. These data suggest that redox regulation of Bach1 is an alternative mechanism to induce multiple ARE-governed genes.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15855052
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"